

WhitePaper

Highlighting Intrinsyc’s Technologies:

Intrinsyc J-Integra

Bi-Directional Pure Java-COM Bridge

Intrinsyc Software, Inc.
700 West Pender Street, 10th Floor
Vancouver, British Columbia
Canada
V6C 1G8

Intrinsyc J-Integra

Page i

Table of Contents

Chapter 1 - Introducing J-Integra.. 1
1.1 Java: Write Once, Run Anywhere. ... 2
1.2 ActiveX: Component Re-Use. ... 3
1.3 The Conflict... 4
1.4 The Solution.. 4

Chapter 2 - Technical information .. 5
2.1 DCOM-Based ... 5
2.2 Access to Automation Components.. 5
2.3 Low Overhead... 5
2.4 ActiveX Data Types are Totally Hidden... 6
2.5 Event Handling ... 6
2.6 Bi-Directional .. 7
2.7 Authentication ... 7

Intrinsyc J-Integra

Page 1

Chapter 1 - Introducing J-Integra
J-Integra is a COM-Java bridging tool. Using J-Integra, you can access ActiveX
Components as though they were Java Objects, and you can access pure Java
objects as though they were ActiveX Components.

J-Integra is used throughout the world, including in many European and US banks
and financial institutions. If you work for a major bank, pharmaceutical company,
IT company, or in telecommunications, chances are that someone in your company
has purchased J-Integra licenses.

J-Integra's Java-COM bridging capabilities are infinitely flexible, allowing COM
access to and from Java objects that are running on any operating system
environment. The kit comes with step-by-step tutorial examples leading you
through the most common usage scenarios.

♦ J-Integra works with any Java Virtual Machine, on any platform, and
requires no native code (no DLLs).

Intrinsyc J-Integra

Page 2

J-Integra's pure Java runtime talks to COM components using Distributed COM
(DCOM) layered over Remote Procedure Calls (RPC), which are themselves layered
on TCP/IP. So at the lowest level, J-Integra uses the totally standard Java
networking classes.

To the Java programmer, J-Integra makes COM components look just like Java
objects, presenting COM properties, methods and events as Java properties,
methods and events.

The J-Integra bridge is bi-directional. COM developers can make callbacks into Java
objects. J-Integra dynamically "remote-enables" any Java object, making all of its
public methods and member variables accessible from COM.

♦ J-Integra: No compromise bridging between pure Java and ActiveX.

1.1 Java: Write Once, Run Anywhere.

One of the reasons why so many companies are using Java is that it allows them to
dramatically reduce the costs of software development and deployment, because
Java programs can execute on any platform that supports a standard Java Virtual
Machine (JVM).

The principle of developing "pure" Java software is a very important one, and
many software developers are (justifiably) quite concerned about the use of any
software which locks them into a specific platform.

Intrinsyc J-Integra

Page 3

1.2 ActiveX: Component Re-Use.

Software Components are a natural evolution of Object-oriented software
development, enabling the isolation of parts of an application into separate
components. Such components can be shared between applications, and since
components are only accessed through a rigidly defined interface, their
implementation can be changed without impacting applications that use them.
Microsoft's widely used Component Object Model (COM) defines a binary standard
for component integration, allowing COM components created using Visual BASIC
(for example), to be accessed from an application created using Visual C++.
A massive number of ActiveX (COM) Components have been created and are
available for purchase. Indeed, any software which has been recently developed
under Microsoft Windows will almost certainly have been created using such
components.

Modern software design under Microsoft Windows practically mandates that an
application be designed using an ActiveX Component-based approach. One of the
benefits of doing so is that parts of an application's functionality can be made
accessible to other applications, not only on the same host, but also remotely using
Distributed COM (DCOM).

Intrinsyc J-Integra

Page 4

1.3 The Conflict

There may be conflict between the desire to create Java software which runs
anywhere, and the need to re-use ActiveX software components.

This conflict often manifests itself in companies where there are two clearly divided
camps -- the Java developers, who dislike anything which will limit their pure Java
software to a specific platform, and the Windows developers, who are urging the
use and re-use of ActiveX components.

Nevertheless, there is frequently a business need to access existing applications
from new applications developed in pure Java, running in a standard JVM. Many of
these existing applications were developed under Microsoft Windows, and because
they were well designed, they expose their functionality to other applications by
exposing ActiveX Components.

1.4 The Solution

♦ Write once, run anywhere, and benefit from ActiveX Component re-use

J-Integra offers a solution. Internally, it uses a standard platform independent
mechanism that Microsoft has defined for accessing ActiveX Components.

Intrinsyc J-Integra

Page 5

Chapter 2 - Technical information
2.1 DCOM-Based

Internally, J-Integra uses the Distributed COM network protocol to provide access
to both local and remote ActiveX components from a pure Java environment.
DCOM is an integral part of Windows NT and Windows 98, and is available for
Windows 95 free from Microsoft.

This means that there is no special software to install on the machine hosting
the ActiveX Component.

2.2 Access to Automation Components

J-Integra provides access to the most widely used form of ActiveX Component --
ActiveX Automation Component (as well as IDispatch derived 'dual' interfaces).

Almost all standard Microsoft products (such as Excel) expose Automation
interfaces, as does most third party software.

When your software developers create ActiveX Components using tools such as
Visual C++ and Visual BASIC, they will almost definitely be creating Automation
Components.

2.3 Low Overhead

The J-Integra Java runtime (jintegra.jar) is approx 220K in size. J-Integra has been
engineered using a pragmatic approach, bearing in mind that one of the uses for
the product may be to provide Java Applet-based interfaces to existing ActiveX
Component-based applications.

Intrinsyc J-Integra

Page 6

2.4 ActiveX Data Types are Totally Hidden

Although ActiveX Components deal with data types such as Variants, SAFEARRAYS,
and OLE Dates, J-Integra completely hides the existence of such data types,
dynamically mapping between ActiveX types and the most appropriate Java types.

This small code excerpt from an Excel Example demonstrates this point. The Range
ActiveX Component (part of Excel) has a Value property, which can be set to
update the values in a range of spreadsheet cells.

In ActiveX terms, the Value property is a two dimensional SAFEARRAY of Variants.
In Java, you simply create a two dimensional array of Objects, and populate it with
standard Java objects (instances of java.util.Date, Float, Boolean, etc.). J-Integra
does the rest:

 . . .
 Range range = sheet.getRange("A1:C3", null);

 // New contents for the range -- notice the standard Java types
 Object[][] newValue = { { "defe", new Boolean(false), new
Double(98765.0/12345.0)},
 { new Date(), new Integer(5454), new Float(22.0/7.0) },
 { new Boolean(true), "dffe", new Date() } };

 range.setValue(newValue); // Update the spreadsheet
 . . .

2.5 Event Handling

If an ActiveX component can generate events (in COM terms, has a source interface,
perhaps called xyz), J-Integra will allow Java objects to implement the event xyz
event interface, and then subscribe to that event using the standard Java semantics
of addXYZListener and removeXYZListener.

Intrinsyc J-Integra

Page 7

2.6 Bi-Directional

You may pass a reference to a Java object as a parameter to a method call on an
ActiveX Component. That component may then make calls back into the Java
object as though it were a standard ActiveX Component.

You can also create an instance of a Java object from Visual BASIC using a simple
Moniker based mechanism:
 Set anObject = GetObject("YourJvm:com.yourcompany.YourClass")

J-Integra supports both early binding and late binding, and includes examples of
accessing Java objects from Visual BASIC (both late and early binding), from Visual
C++, and from Excel VBA. J-Integra can also be used to access Enterprise Java
Beans from COM.

2.7 Authentication

When accessing an ActiveX Component from Java using J-Integra, specify the
domain, username, and password to be used to Authenticate access to the
component:

 . . .
 AuthInfo.setDefault("NT DOMAIN", "NT USER", "password");
 excel.Application app = new excel.Application();
 . . .

Intrinsyc J-Integra

Page 8

If no host name is passed to the constructor, J-Integra assumes you wish to create a
component on the local host.

J-Integra supports both NT Challenge-Response, and the legacy LanMan
authentication (which can be disabled if not required). These authentication
mechanisms do not cause passwords to be sent across the network.

By enabling Auditing of logons, it is possible to see that the user name and
password have been verified through the standard Windows NT Authentication
mechanism (in this case the computer running the Java software is called linar1):

Microsoft's standard DCOM configuration tool is used to specify exactly who may
access a component.

Copyright © 2001 Intrinsyc Software, Inc.

	T
	Table of Contents
	Introducing J-Integra
	Java: Write Once, Run Anywhere.
	ActiveX: Component Re-Use.
	The Conflict
	The Solution

	Technical information
	DCOM-Based
	Access to Automation Components
	Low Overhead
	ActiveX Data Types are Totally Hidden
	Event Handling
	Bi-Directional
	Authentication

